Emotion Recognition with Speech for Call Centres using LPC and Spectral Analysis
نویسندگان
چکیده
Emotion recognition from human speech is a challenge for the researchers. It is mostly considered under ideal acoustic conditions. The performance of such system is degraded while there is existence of environmental mismatches between training and testing phases. For robust speech recognition it requires for reduction of redundancy, variability, and capturing ability of speech signals in noisy environments. Cepstral coefficients are popularly used features and derived from linear predictive coding (LPC). In that case speech signal is assumed to be the output of the all-pole linear filter simulating the vocal tract of a human being. Such recognition systems with LPC-derived cepstrum work well in clean environments, where the performance is carried with these features. The result obtained using this method has a great achievement. In this paper, the overall emotion recognition process has two goals. The first goal is to provide an update record of the available emotional speech data. The number of emotional states, the number of speakers, and the kind of speech are briefly addressed. The second goal is to present the most frequent features used for emotional speech recognition and to assess how the emotion affects them. Two features have been considered for emotion recognition as linear predictive coding (LPC) and spectral analysis.
منابع مشابه
Classification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملAn adaptive MEL-LPC analysis for speech recognition
This paper describes a new speech analysis method, an adaptive Mel-LPC (AMLPC) analysis method, using human auditory characteristics. The Mel-LPC analysis method that we have proposed is an efficient time domain technique to estimate the warped predictors from input speech directly. However, the frequency resolution of spectrum obtained by Mel-LPC analysis is constant regardless of the characte...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کامل